Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.01.29.22270066

ABSTRACT

Background Currently used vaccines to protect from COVID-19 mostly focus on the receptor-binding domain (RBD) of the viral spike protein, and induced neutralizing antibodies have shown to be protective. However, functional relevance of vaccine-generated antibodies are poorly understood on variants-of-concern (VOCs) and mucosal immunity. Methods We compared specific antibody production against the S1 subunit and the RBD of the spike protein, the whole virion of SARS-CoV-2, and monitored neutralizing antibodies in sera and saliva of 104 BNT162b2 vaccinees and 57 individuals with natural SARS-CoV-2 infection. Furthermore, we included a small cohort of 11 individuals which received a heterologous ChAdOx1-S/BNT162b2 prime-boost vaccination. Results Vaccinated individuals showed higher S1-IgG antibodies in comparison to COVID-19 patients, followed by a significant decrease 3 months later. Neutralizing antibodies (nAbs) were poorly correlated with initial S1-IgG levels, indicating that these might largely be non-neutralizing. In contrast, RBD IgGAM was strongly correlated to nAbs, suggesting that RBD-IgGAM is a surrogate marker to estimate nAb concentrations after vaccination. The protective effect of vaccine- and infection-induced nAbs was found reduced towards B.1.617.2 and B.1.351 VOCs. NAb titers are significantly higher after third vaccination compared to second vaccination. In contrast to COVID-19 patients, no relevant levels of RBD specific antibodies were detected in saliva samples from vaccinees. Conclusions Our data demonstrate that BNT162b2 vaccinated individuals generate relevant neutralizing antibodies, which begin to decrease within three months after immunization and show lower neutralizing potential to VOCs as compared to the original Wuhan virus strain. A third booster vaccination provides a stronger nAb antibody response than the second vaccination. The systemic vaccine does not seem to elicit readily detectable mucosal immunity.


Subject(s)
COVID-19
3.
preprints.org; 2021.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202108.0440.v1

ABSTRACT

Although, severe acute respiratory syndrome coronavirus – 2 (SARS-CoV 2) represents one of the biggest challenges in the world today, the exact immunopathogenic mechanism that leads to severe or critical Coronavirus Disease 2019 (COVID-19) has remained incompletely understood. Several studies have indicated that high systemic plasma levels of inflammatory cytokines result in the so-called “cytokine storm”, with subsequent development of microthrombosis, disseminated intravascular coagulation, and multiorgan-failure. Therefore, we reasoned that elevated inflammatory cytokine might act as prognostic factors. Here, we analyzed 245 serum samples of patients with COVID-19, collected at hospital admission. We assessed the levels of heat shock protein 27 (HSP27), soluble suppressor of tumorigenicity- 2 (sST2), caspase cleaved cytokeratin 18 (cCK18), 20S proteasome, and tumor necrosis factor receptor 1 (TNFR-1) and explored their associations with overall-, 30-, 60-, 90-day- and in-hospital mortality. Moreover, we investigated their association with the risk of ventilation. We demonstrated that increased serum sST2 was uni- and multivariably associated with all endpoints. However, we also identified 20S proteasome as independent prognostic factor for in-hospital mortality. Furthermore, elevated HSP27, sST2, and 20S proteasome levels at hospital admission were univariably associated with higher risk of invasive ventilation. These findings could help to identify high-risk patients early in the course of COVID-19.


Subject(s)
Coronavirus Infections , Heart Failure , Disseminated Intravascular Coagulation , Necrosis , Severe Acute Respiratory Syndrome , Neoplasms , COVID-19
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.02.22.21252207

ABSTRACT

In patients with critical or mild COVID19 (WHO stages 6-8 [n=53] and stages 1-3 [n=66]), 593 urinary peptides significantly affected by disease severity were identified, reflecting the molecular pathophysiology associated with the course of the infection. The peptide profiles were similar compared with those observed in kidney disease, a prototype of target organ damage with major microvascular involvement, thereby confirming the observation that endothelial damage is a hallmark of COVID19. The clinical corollary is that COVID19 is an indication for anti-oxidative, anti-inflammatory and immunosuppressive treatment modalities protecting the endothelial lining.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL